Impact of poroelasticity of intraluminal thrombus on wall stress of abdominal aortic aneurysms

نویسندگان

  • Stanislav Polzer
  • T Christian Gasser
  • Bernd Markert
  • Jiri Bursa
  • Pavel Skacel
چکیده

BACKGROUND The predictions of stress fields in Abdominal Aortic Aneurysm (AAA) depend on constitutive descriptions of the aneurysm wall and the Intra-luminal Thrombus (ILT). ILT is a porous diluted structure (biphasic solid-fluid material) and its impact on AAA biomechanics is controversially discussed in the literature. Specifically, pressure measurements showed that the ILT cannot protect the wall from the arterial pressure, while other (numerical and experimental) studies showed that at the same time it reduces the stress in the wall. METHOD To explore this phenomenon further a poroelastic description of the ILT was integrated in Finite Element (FE) Models of the AAA. The AAA model was loaded by a pressure step and a cyclic pressure wave and their transition into wall tension was investigated. To this end ILT's permeability was varied within a microstructurally motivated range. RESULTS The two-phase model verified that the ILT transmits the entire mean arterial pressure to the wall while, at the same time, it significantly reduces the stress in the wall. The predicted mean stress in the AAA wall was insensitive to the permeability of the ILT and coincided with the results of AAA models using a single-phase ILT description. CONCLUSION At steady state, the biphasic ILT behaves like a single-phase material in an AAA model. Consequently, computational efficient FE single-phase models, as they have been exclusively used in the past, accurately predict the wall stress in AAA models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biochemomechanics of intraluminal thrombus in abdominal aortic aneurysms.

Most computational models of abdominal aortic aneurysms address either the hemodynamics within the lesion or the mechanics of the wall. More recently, however, some models have appropriately begun to account for the evolving mechanics of the wall in response to the changing hemodynamic loads. Collectively, this large body of work has provided tremendous insight into this life-threatening condit...

متن کامل

Impact of wall thickness and saccular geometry on the computational wall stress of descending thoracic aortic aneurysms.

BACKGROUND Wall stress calculated using finite element analysis has been used to predict rupture risk of aortic aneurysms. Prior models often assume uniform aortic wall thickness and fusiform geometry. We examined the effects of including local wall thickness, intraluminal thrombus, calcifications, and saccular geometry on peak wall stress (PWS) in finite element analysis of descending thoracic...

متن کامل

Mechanical platelet activation potential in abdominal aortic aneurysms.

Intraluminal thrombus (ILT) in abdominal aortic aneurysms (AAA) has potential implications to aneurysm growth and rupture risk; yet, the mechanisms underlying its development remain poorly understood. Some researchers have proposed that ILT development may be driven by biomechanical platelet activation within the AAA, followed by adhesion in regions of low wall shear stress. Studies have invest...

متن کامل

Automated Delineation of Vessel Wall and Thrombus Boundaries of Abdominal Aortic Aneurysms Using Multispectral MR Images

A correct patient-specific identification of the abdominal aortic aneurysm is useful for both diagnosis and treatment stages, as it locates the disease and represents its geometry. The actual thickness and shape of the arterial wall and the intraluminal thrombus are of great importance when predicting the rupture of the abdominal aortic aneurysms. The authors describe a novel method for delinea...

متن کامل

A longitudinal comparison of hemodynamics and intraluminal thrombus deposition in abdominal aortic aneurysms.

Abdominal aortic aneurysm (AAA) is often accompanied by in traluminal thrombus (ILT), which complicates AAA progression and risk of rupture. Patient-specific computational fluid dynamics modeling of 10 small human AAA was performed to investigate relations between hemodynamics and ILT progression. The patients were imaged using magnetic resonance twice in a 2- to 3-yr interval. Wall content dat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2012